
©	Blueinfy	Solutions		 1	

'lambdaScanner'	–	Scan	&	Secure	Toolkit	
Footprint, Enumerate, Scan, Tunnel, Trace, Watch & Protect Lambda
	
	
	
	
	

Table	of	Contents	
	

'lambdaScanner'	–	Scan	&	Secure	Toolkit	..	1	
Objective	...	2	
Requirements	...	3	
Setting	up	AWS	Credentials	for	Testing:	...	3	
footprintLambda	..	4	
enumLambda	...	5	
scanLambda	..	7	
tunnelLambda	...	10	
traceLambda	..	13	
watchLambda	...	16	
protectLambda	...	18	

Release	Notes	...	20	
	

	 	

©	Blueinfy	Solutions		 2	

Objective	

'lambdaScanner' is a toolkit which has a combination of scripts for performing
penetration testing of lambda functions. The scripts available in the toolkit help
assessing the lambda functions from a security standpoint. It helps the tester to
discover vulnerabilities in deployment as well as code. It aids in checking
vulnerabilities like improper permissions, SQL injections, command executions etc.
to name a few. This is not an automated scanner, but a toolkit that helps pen-testers to
perform the testing of functions, so it needs to be used wisely by crafting customized
requests and payloads. The lambda functions are invoked through various events
encompassing AWS like S3, DynamoDB, SQS etc. so the scripts in the toolkit are
very helpful in evaluating functions as well as directly testing with various sets of
payloads. All these scripts are written in python by using boto3 APIs. The toolkit also
has a package called 'lambdaProtect' which can be integrated with an existing lambda
function to guard both incoming event stream as well as outgoing response.

This toolkit is "in progress/prototype" and would be enhanced with time by an
addition of various functionalities.

Here is a diagram, which describes 'lambdaScanner': -

Figure 1 – Lambda Function Architecture and Testing Methodology using
'lambdaScanner'
	
As shown in the figure, the lambda function, which is well integrated to all
components, can be accessed through various devices like mobile, browser or even
APIs. The web application or other components call the lambda function and this fires
a set of events from time to time. At the same time, since it makes changes to various
places at every point of execution, we can access all these footprints via APIs. With
the use of boto3 client, we are directly accessing and testing the lambda function as
shown in the figure. We can also deploy 'lambdaProtect' for securing the events as
well as output.

©	Blueinfy	Solutions		 3	

Requirements	

To run 'lambdaScanner' scripts, one needs to install the following: -

(+) Python3
(+) Boto3 (Library for AWS)

For the installation of boto3, you can find more information and guidance from here: -
https://pypi.org/project/boto3/

Setting	up	AWS	Credentials	for	Testing:	

You can either directly write your credentials to the configuration file in your shell or
use AWS client to set it up: - https://docs.aws.amazon.com/cli/latest/userguide/cli-
chap-getting-started.html

You can find more information and options over here: -
https://boto3.readthedocs.io/en/latest/guide/configuration.html

Once credentials are set, you can start using 'lambdaScanner' toolkit. It has the
following seven scripts in place: -

1. footprintLambda
2. enumLambda
3. scanLambda
4. tunnelLambda
5. traceLambda
6. watchLambda
7. protectLambda

Let’s go through each one of them and understand its usage.

©	Blueinfy	Solutions		 4	

footprintLambda	

'footprintLambda' searches the footprints of the lambda function across various AWS
components like S3, DynamoDB, SQS etc. The script will go through all the data and
establish a footprinting relationship with the lambda function and other components.
It helps in identifying events supported by that lambda function.

Following is the basic help: -

Let's use "–p" to start footprinting.

Here, we can see that the tool discovered that the "processInvoice" function is
triggered by SQS service. Hence, now we can fuzz the function with SQS event
structure.

©	Blueinfy	Solutions		 5	

enumLambda	

'enumLambda' helps in identifying all the functions deployed in the environment and
then one can identify key attributes of any targeted function. The tool will fetch and
enumerate the function.

Following is the basic help: -

First just use "-e" switch and enumerate the list of functions deployed.

Now, we can enumerate the function "login" if interested in testing that function. We
can run the following command using "-f" switch.

©	Blueinfy	Solutions		 6	

We can get very critical information like technology stack, role, permission, policy
for the role, location to get source code, mapping and integration with API gateway
etc. This set of information can help in identifying security issues and allow one to
invoke and scan the function.

©	Blueinfy	Solutions		 7	

scanLambda	

'scanLambda' helps in invoking and fuzzing the function with different values being
injected into the event stream. We can do full scanning by passing different values
and see its impact on the function. Based on the error messages or behaviour we can
discover vulnerabilities within the function.

Following is the basic help: -
It has two main switches "-i" and "-s".

We have a file called "event.txt", as shown below, which has a stream of events
written in it. These events can be of any type - be it a message, S3, Alexa or simple
name value pairs. We can pass this file along with the target function.

As shown below, we are using "-i" to invoke the function, selecting the "login"
function to be invoked and passing our "event.txt" file. This command will invoke the
function, show its response, logs and the response ID which can be used to trace the
request/response in the logs.

©	Blueinfy	Solutions		 8	

Now let's move ahead and scan this function with different values (fuzz). We have a
folder called "scan-config". This folder has two files – "payload.txt" and "regex.txt".
The payloads or the fuzzing values can be defined in the "payload.txt" file in separate
lines as shown below. At the same time, we can put regular expressions which we
want to check against in the "regex.txt" file.

In the "event.txt" file, we can define injection points with $fuzz$. The script will take
values from the "payload.txt" file and change at this position before invoking the
function.

We can run and see the output on the screen or dump it to a file. The analysis will
show if a regex matches to the output. It helps in defining and discovering
vulnerabilities within the function. This is how we can scan functions.

©	Blueinfy	Solutions		 9	

©	Blueinfy	Solutions		 10	

tunnelLambda	
	
'tunnelLambda'	 helps	 in	 establishing	 a	 tunnel	 from	 your	 shell	 to	 a	 targeted	
lambda	function.	It	helps	in	sending	HTTP	traffic	to	the	selected	port,	which	will	
automatically	tunnel	to	the	test	function.	Hence,	now	we	can	use	some	standard	
HTTP	tools	like	Burp	or	ZAP	to	test	the	lambda	function.	
	
Following	is	the	basic	help:	-	
We	have	to	pass	two	parameters	–	function	and	port	using	"-f"	and	"–p"	switches.	
	

	
	
Once	 it	 is	 set,	 the	 script	will	 listen	 on	 the	 target	 port	 for	 both	 GET	 and	 POST	
requests	as	shown	below:	-	
	

	
	
When	you	make	a	GET	request	 it	will	 serve	a	simple	HTML	page	which	can	be	
used	to	interact	with	the	lambda	function	as	shown	in	the	below	figure.	We	can	
just	open	the	page	in	a	browser,	put	the	event	stream	and	click	on	"Send"	button.	
It	will	show	the	output	once	it	is	invoked.	
	

©	Blueinfy	Solutions		 11	

	
	
Also,	we	 can	 use	 Burp	 or	 any	 other	 tool	 to	make	 a	 POST	 request	 directly.	We	
need	to	configure	the	details	in	Burp	repeater	as	shown	below:	-	
	

	
	
Once	it	is	set,	we	can	make	the	call	as	shown	below:	-	
	

©	Blueinfy	Solutions		 12	

	
	
Next,	 we	 can	 simply	 send	 the	 request	 to	 intruder	 and	 run	 attacks	 as	 shown	
below:	-	
	

	

©	Blueinfy	Solutions		 13	

traceLambda	

'traceLambda' helps in tracing the request ID within various logs on CloudWatch.

Following is the basic help: -

As shown below, we can first get the request ID from the invoke call. Also, we can
get a similar ID from the HTTP call made through an API gateway, as a part of HTTP
response.

Once we have the ID, it can be passed with "-i" switch to the script and it will grab
the log entries from CloudWatch logs as shown below: -

©	Blueinfy	Solutions		 14	

Next, we can get all logs for a specific function. Here, we are getting the logs for
"login" function.

Lambda is having support for instrumentation and extension of the function via xRay
services. It helps in tracking various things at runtime for each invoke. It provides
traces along with external calls like time taken to access DynamoDB or S3 etc. It
helps in discovering vulnerabilities as well. Also, developer/pentester can inject code
to fetch information at runtime as well. We can use "-x" switch to fetch last few traces
(120 seconds).

©	Blueinfy	Solutions		 15	

©	Blueinfy	Solutions		 16	

watchLambda	

'watchLambda' enables investigating and monitoring of attacks on the lambda
function. We can make a list of attack signatures in the rules file and run it against the
logs.

Following is the basic help: -

As shown below, the "rules.txt" file has a set of regex. These patterns get compared
within the logs of the targeted function.

Now, by running the tool as shown below, we can get a list of points where the
pattern is matching. It helps in discovering possible attacks. We can look into the logs
and further analyse a specific instance.

©	Blueinfy	Solutions		 17	

Here, for example we can see an instance of a blind SQL injection probe.

©	Blueinfy	Solutions		 18	

protectLambda	

'protectLambda' is a lambda protection function that needs to be deployed with the
function code.

We need to add this folder in the project and add the following lines of code for
protection as shown below: -

from	protectLambda.protect	import	protect	
	
@protect	
def	lambda_handler(event,	context):	

Once this is done, we can add rules for both incoming event stream as well as
outgoing stream by regex patterns. We have two files added to the project –
"in_protect.txt" and "out_protect.txt" as shown below with dummy/real rules.

in_protect.txt

out_protect.txt

©	Blueinfy	Solutions		 19	

Now, if we try to inject a function with 1=1 payload then we get the following output:
-

Request Stream:

Output:

This way we can secure both incoming and outgoing streams for lambda function.

©	Blueinfy	Solutions		 20	

Release	Notes	

Date: 18th August, 2018
Version 1.0 (beta) – Basic Release

